Cite this article as:

Iryshkov E. S., Solovyeva E. N., Arakelyan M. S., Rastegar-Poyani E. ., Moaddab M. ., Milto K. D., Galoyan E. A. Phylogeny and geographic distribution of rock lizards (Lacertidae, Reptilia) in Alborz mountain range. Current Studies in Herpetology, 2023, vol. 23, iss. 3, pp. 93-101. DOI: https://doi.org/10.18500/1814-6090-2023-23-3-4-93-101


This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Heading: 
UDC: 
598.132.4:339.5

Phylogeny and geographic distribution of rock lizards (Lacertidae, Reptilia) in Alborz mountain range

Abstract

Rock lizards of the genus Darevskia have long been an important model object for study of reptile evolution. To understand the overall picture, it is important to know how bisexual and parthenogenetic species are distributed within this genus. The ranges of Caucasian species of rock lizards have been studied for a long time and in detail. However, recent attention to the species inhabiting the territory of Iran has been attracted after the description of several new species in 2013. As part of the continuation of these studies, we studied the distribution and genetic diversity of five species of lizards of the Darevskia genus along the Alborz mountain range in Iran: D. chlorogaster, D. caspica, D. defilippii, D. schaekeli and D. raddei. In the course of this, we discovered new localities of D. defilippii that are outside their known range. We assessed the phylogenetic relationships between the studied species according to the ND4 – Leu tRNA region of mitochondrial DNA and found a relatively high level of genetic variability in D. defilippii and D. chlorogaster, while D. raddei, despite its wide distribution, has low variability. In general, the phylogenetic position of the studied species is somewhat different from that described by Ahmadzadeh et al. (2013).

References

Ahmadzadeh F., Flecks M., Carretero M. A., Mozaffari O., Böhme W., Harris D. J., Freitas S., Rödder D. Cryptic speciation patterns in Iranian rock lizards uncovered by integrative taxonomy. PLoS ONE, 2013, vol. 8, no. 12, article no. e80563. https://doi.org/10.1371/journal.pone.0080563

Arevalo E., Davis S. K., Sites Jr. J. W. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Systematic Biology, 1994, vol. 43, no. 3, pp. 387–418. https://doi.org/10.1093/sysbio/ 43.3.387

Beck H. E., Zimmermann N. E., McVicar T. R., Vergopolan N., Berg A., Wood E. F. Present and future köppen-geiger climate classification maps at 1-km resolution. Scientific Data, 2018, vol. 5, iss. 1, pp. 1–12. https://doi.org/10.1038/ sdata.2018.214

Bensasson D., Zhang D. X., Hartl D. L., Hewitt G. M. Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends in Ecology and Evolution, 2001, vol. 16, iss. 6, pp. 314–321. https://doi.org/10.1016/S0169-5347(01)02151-6

Breckle S. W. Salt deserts in Iran and Afghanistan. Sabkha Ecosystems, 2002, vol. 1, pp. 109–122.

Cherlet M., Hutchinson C., Reynolds J., Hill J., Sommer S., von Maltitz G. World Atlas of Desertification. Luxembourg, Publication Office of the European Union, 2018. 252 p. https://doi.org/10.2760/06292

Chow S., Yanagimoto T., Takeyama H. Detection of heteroplasmy and nuclear mitochondrial pseudogenes in the Ja-panese spiny lobster Panulirus japonicus. Scientific Reports, 2021, vol. 11, iss. 1, article no. 21780. https://doi.org/10.1038/ s41598-021-01346-8

Darevsky I. S. Rock Lizards of the Caucasus: Systema-tics, Ecology, and Phylogenesis of the Polymorphic Groups of Caucasian Rock Lizards of the Subgenus Archaeolacerta. Le-ningrad, Nauka, 1967. 214 p. (in Russian).

Doherty T. S., Balouch S., Bell K., Burns T. J., Feldman A., Fist C., Garvey T. F., Jessop T. S., Meiri S., Driscoll D. A. Reptile responses to anthropogenic habitat modification: A global meta-analysis. Global Ecology and Biogeography, 2020, vol. 29, iss. 7, pp. 1265–1279. https://doi.org/10.1111/geb.13091

Dutton P. H., Davis S. K., Guerra T., Owens D. Molecular phylogeny for marine turtles based on sequences of the ND4-leucine tRNA and control regions of mitochondrial DNA. Molecular Phylogenetics and Evolution, 1996, vol. 5, iss. 3, pp. 511–521. https://doi.org/10.1006/mpev.1996.0046

Erasmus B. F. N., Van Jaarsveld A. S., Chown S. L., Kshatriya M., Wessels K. J. Vulnerability of South African ani-mal taxa to climate change. Global Change Biology, 2002, vol. 8, iss. 7, pp. 679–693. https://doi.org/10.1046/j.1365-2486.2002.00502.x

Freitas S., Rocha S., Campos J., Ahmadzadeh F., Corti C., Sillero N., Ilgaz C., Kumlutaş Y., Arakelyan M., Harris D. J., Carretero M. A. Parthenogenesis through the ice ages: A biogeographic analysis of Caucasian rock lizards (genus Darevskia). Molecular Phylogenetics and Evolution, 2016, vol. 102, pp. 117–127. https://doi.org/10.1016/j.ympev.2016.05.035

Heshmati G. A. Vegetation characteristics of four ecological zones of Iran. International Journal of Plant Production, 2007, vol. 1, no. 2, pp. 215–224.

Huelsenbeck J. P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 2001, vol. 17, no. 8, pp. 754–755.

Jafari S. M., Zarre S., Alavipanah S. K. Woody species diversity and forest structure from lowland to montane forest in Hyrcanian forest ecoregion. Journal of Mountain Science, 2013, vol. 10, iss. 4, pp. 609–620. https://doi.org/10.1007/s11629-013-2652-2

Kabir S., Shahriar M., Kabir A. H., Uddin M. G. High salt SDS-based method for the direct extraction of genomic DNA from three different gram-negative organisms. CDR, 2006, vol. 1, no. 2, pp. 57–64.

Kalyaanamoorthy S., Minh B. Q., Wong T. K., Von Haeseler A., Jermiin L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 2017, vol. 14, no. 6, pp. 587–589. https://doi.org/10.1038/nmeth.4285

Lanfear R., Calcott B., Ho S. Y., Guindon S. Partitionfinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 2012, vol. 29, iss. 6, pp. 1695–701. https://doi.org/10.1093/molbev/mss020

Minh B. Q., Nguyen M. A. T., Von Haeseler A. Ultrafast Approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 2013, vol. 30, iss. 5, pp. 1188–1195. https://doi.org/10.1093/molbev/mst024

Naqinezhad A., Hamzeh’ee B., Attar F. Vegetation–envi-ronment relationships in the alderwood communities of Caspian lowlands, N. Iran (toward an ecological classification). Flora: Morphology, Distribution, Functional Ecology of Plants, 2008, vol. 203, iss. 7, pp. 567–577. https://doi.org/10.1016/j.flora.2007.09.007

Nguyen L. T., Schmidt H. A., von Haeseler A., Minh B. Q. IQ-TREE: A Fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 2015, vol. 32, iss. 1, pp. 268–274. https://doi.org/10.1093/ molbev/msu300

Olson D. M., Dinerstein E., Wikramanayake E. D., Burgess N. D., Powell G. V. N, Underwood E. C., D’Amico J. A., Itoua I., Strand H. E., Morrison J. C., Loucks C. J., Allnutt T. F., Ricketts T. H., Kura Y., Lamoreux J. F., Wettengel W. W., He-dao P., Kassem K. R. Terrestrial ecoregions of the world: A new map of life on Earth. BioScience, 2001, vol. 51, pp. 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA] 2.0.CO;2

Peck L. S., Clark M. S., Morley S. A., Massey A., Rossetti H. Animal temperature limits and ecological relevance: Effects of size, activity and rates of change. Functional Ecology, 2009, vol. 23, iss. 2, pp. 248–256. https://doi.org/10.1111/ j.1365-2435.2008.01537.x

Perry G., Buchanan B. W., Fisher R. N., Salmon M., Wise S. E. Effects of artificial night lighting on amphibians and reptiles in urban environments. Urban Herpetology, 2008, vol. 3, pp. 239–256.

Peterson D. L., Gleisner J. M., Blakley R. L. Bovine liver dihydrofolate reductase. Purification and properties of the enzyme. Biochemistry, 1975, vol. 14, no. 24, pp. 5261–5267. https://doi.org/10.1021/bi00695a005

Rambaut A., Drummond A. J., Xie D., Baele G., Suchard M. A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 2018, vol. 67, no. 5, pp. 901–904. https://doi.org/10.1093/sysbio/syy032

Rastegar-Pouyani E., Rastegar-Pouyani N., Hosseinian Yousefkhani S. S., Arab M. Rediscovery of Darevskia steineri (Eiselt, 1995) (Sauria: Lacertidae) from Iran. Russian Journal of Herpetology, 2013, vol. 20, no. 1, pp. 36–38. https://doi.org/10.30906/ 1026-2296-2013-20-1-36-38

Ronquist F., Huelsenbeck J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003, vol. 19, no. 12, pp. 1572–1574. https://doi.org/10.1093/ bioinformatics/btg180

Safaei-Mahroo B., Ghaffari H., Fahimi H., Yazdanian S., Majd E., Rezazadeh S., Hosseinzadeh M., Nasrabadi R., Rajabizadeh M., Mashayekhi M., Motesharei A., Nader A., Kazemi S. The herpetofauna of Iran: Checklist of taxonomy, distribution and conservation status. Asian Herpetological Research, 2015, vol. 6, no. 4, pp. 257–290. https://doi.org/10.16373/ j.cnki.ahr.140062

Simmons A. M., Narins P. M. Effects of anthropogenic noise on amphibians and reptiles. In: Effects of Anthropogenic Noise on Animals. New York, Springer, 2018, vol. 66, pp. 179–208. https://doi.org/10.1007/978-1-4939-8574-6_7

Yousefi M., Khani A., Eslahi H., Hosseinian Yousefk-hani S. S. Easternmost record of Darevskia defilippii (Came-rano, 1877) from Qarchaqe Protected Area, Kopet Dagh Mountains, northeastern Iran. L@certidae, 2013, vol. 9, pp. 160–163

Short text (in English): 
Full text (in Russian): 
Номер страницы (по): 
101.00