Cite this article as:

Yermokhin M. V., Tabachishin V. G. Body Size and Condition Dynamics of Pelobates fuscus (Anura, Pelobatidae) Metamorfs under Transphormation of Floodplain Lakes Hydrological Regime. Current Studies in Herpetology, 2018, vol. 18, iss. 3, pp. 101-117. DOI: https://doi.org/10.18500/1814-6090-2018-18-3-4-101-117


Heading: 
UDC: 
597.833(470.44)

Body Size and Condition Dynamics of Pelobates fuscus (Anura, Pelobatidae) Metamorfs under Transphormation of Floodplain Lakes Hydrological Regime

Abstract

The long-term dynamics of size and weight characteristics and body condition of Pelobates fuscus metamorphs in five local populations of the Medveditsa river floodplain (Saratov region) are analyzed. The limits of changes in body length, live and dry weight, and the body condition index (W/SVL) of males and females were established. In 2009 - 2018 the size and weight parameters of the P. fuscus metamorphs had a significant level of interannual variation. The body length was 21.0 to 44.0 mm in males and 22.1 to 44.0 mm in females. The weight of live individuals ranged from 1.05 to 13.34 g in males and from 1.28 to 13.65 g in females. The water content in the body reached 80% (on average), and the dry weight was 0.124 - 2.979 g and 0.155 - 3.256 g for males and females, respectively. The body condition of metamorphs in live weight was 44.1 - 305.2 mg/mm in males and 50.6 - 342.1 mg/mm in females, while that in dry weight was 4.6 - 71.4 and 3.9 - 77.0 mg/mm for males and females, respectively. A significant effect of the water content of the lakes on these parameters was found. All indicators had their highest values in years with high floods and the maximum filling of lake basins with water (2012, 2018), and the smallest ones were observed in dry years, accompanied by a sharp decrease in their volume and drying (2009). The lowest variability of the indicators was established in the populations of the lakes operating in the regime of permanent waterbodies, the highest one was in temporary waterbodies. The data obtained confirm our hypothesis of a low level of exchange of individuals between populations, which contributes to the emergence of local adaptations to features of the hydrological regime of a particular waterbody.

References

Borkin L. J., Litvinchuk S. N., Milto K. D., Rosanov J. M., Khalturin M. D. Cryptic speciation in Pelobates fuscus (Anura, Pelobatidae): cytometrical and bio-chemical evidences. Doklady Biological Sciences, 2001, vol. 376, pp. 86–88.
Garanin V. I., Panchenko I. M. Methods of the study of amphibians in nature reserves. In: Amphibians and reptiles of protected areas. Moscow, TsNIL Glavokhoty RSFSR Publ., 1987, pp. 8–26 (in Russian).
Yermokhin M. V. Ekologicheskaya struktura marginalnykh uchastkov rechnykh biotsenozov v perekhodnoy zone vodasusha [Ecological Structure of Marginal Patches of River Biocenoses in Water – Land Tran-sitional Zone]. Diss. Cand. Sci. (Biol.). Saratov, 2000. 192 p. (in Russian).
Yermokhin M. V. Methods for Studiing the Flows of Matter and Energy Formed by Animals Between Aquatic and Terrestrial Ecosystems in the River Valleys. Ecosystems of Small Rivers: Biodiversity, Ecology, Conservation. Proceedings of lectures of II All-Russia School-Conference. Yaroslavl, Filigran Publ., 2014, vol. 1, pp. 42–56 (in Russian).
Yermokhin M. V., Tabachishin V. G. Size and sex structure dynamics of Pelobates fuscus (Laurenti, 1768) toadlets in the Medveditsa river  floodplain. Current Studies in Herpetology, 2010, vol. 10, iss. 3–4, pp. 101–108 (in Russian). 
Yermokhin M. V., Tabachishin V. G. Abundance Accounting Result Convergence of Pelobates fuscus (Laurenti, 1768) Migrating Toadlets at Full and Partitial Enclosing of Spawning Waterbody by Drift Fences with Pitfalls. Current Studies in Herpetology, 2011, vol. 11, iss. 3–4, pp. 121–131 (in Russian).
Yermokhin M. V., Tabachishin V. G., Ivanov G. A. Optimisation of Method of Amphibians Accounting by Drift Fences with Pitfalls. In: Problems of Marginal Structures of Biocenoses Investigations. Saratov, Izdatelstvo Saratovskogo universiteta, 2012, pp. 157–163 (in Russian).
Yermokhin M. V., Tabachishin V. G., Bogoslovsky D. S., Ivanov G. A. Noninvasive sex determination of spadefoot toad (Pelobates fuscus) toadlets by morpho-metric and weigh characteristics. Current Studies in Her-petology, 2012, vol. 12, iss. 1–2, pp. 40–48 (in Russian).
Yermokhin M. V., Ivanov G. A., Tabachishin V. G. Spawning Migration Phenology of Anuran Amphibians in the Medveditsa River Valley (Saratov Region). Current Studies in Herpetology, 2013, vol. 13, iss. 3–4, pp. 101–111 (in Russian).
Yermokhin M. V., Tabachishin V. G., Ivanov G. A. Spawning Migration Phenology of Spadefoot Toad – Pelobates fuscus (Pelobatidae, Amphibia) in Medveditsa River Valley (Saratov Region). Povolzhskiy J. of Ecology, 2014 a, no. 3, pp. 342–350 (in Russian)
Yermokhin M. V., Tabachishin V. G., Ivanov G. A. Comparative analysis of body condition indexes efficiency of Pelobates fuscus toadlets. Current Studies in Herpetology, 2014 b, vol. 14, iss. 3–4, pp. 92–102 (in Russian). 
Yermokhin M. V., Tabachishin V. G., Ivanov G. A. Body condition dynamics of Pelobates fuscus (Pelobatidae, Anura) toad-lets during their migration from spawning waterbodies. Current Studies in Herpetology, 2015, vol. 15, iss. 1–2, pp. 39–54 (in Russian).
Yermokhin M. V., Tabachishin V. G., Ivanov G. A. Phenological Changes of the Wintering of Pelobates fuscus (Pelobatidae, Amphibia) in the Climate Transforma-tion Conditions of the Northern Lower-Volga Region. Povolzhskiy J. of Ecology, 2016 а, no. 2, pp. 167–185 (in Russian).
Yermokhin M. V., Tabachishin V. G., Ivanov G. A. Long-term Dynamics of the Size-Weight and Sexual Structure in Populations of Pelobates fuscus (Anura, Pelobatidae) in the Medveditsa River Valley (Saratov Region). Current Studies in Herpetology, 2016 b, vol. 16, iss. 3–4, pp. 113–122 (in Russian).
Yermokhin M. V., Tabachishin V. G., Ivanov G. A. Structural Dynamics of the Spawning Anuran Taxo-cenoses in Floodplain Lakes of the Medveditsa River Valley (Saratov Region). Current Studies in Herpetology, 2017, vol. 17, iss. 3–4, pp. 147–156 (in Russian).
Kireeva M. B. Vodnyi rezhim rek basseina Dona v usloviiakh meniaiushchegosia klimata [Water regime of Don basin rivers in climate change conditions]. Diss. Cand. Sci. (Geogr.). Moscow, 2013. 211 p. (in Russian).
Polukonova A. V., Djomin A. G., Yermokhin M. V., Tabachishin V. G. A Molecular-Genetic Study of Spade-foot Toad Pelobates fuscus (Laurenti, 1768) Local Popu-lations from the Medveditsa River Valley (Saratov Region) by mtDNA – CytB gene. Current Studies in Herpetology, 2013 a, vol. 13, iss. 3–4, pp. 117–121 (in Russian).
Polukonova A. V., Djomin A. G., Yermokhin M. V., Tabachishin V. G. New Gaplotypes of Spadefoot Toad Pelobates fuscus (Laurenti, 1768) from Populations in Medveditsa River Valley (Saratov District). In: Inland Water Biology. Proceedings XV School-Conference of Young Scientists. Kostroma, Kostromskoy pechatny dom, 2013 b, pp. 304–308 (in Russian).
Terentyev P. V. Some quantitative peculiarities of frog eggs and tadpoles. Zoologicheskii zhurnal, 1960, vol. 39, no. 5, pp. 779–781 (in Russian).
Schlyakhtin G. V., Tabachishin V. G., Yermokhin M. V. History and Main Directions of Herpetofauna Investigations at Northern Part of Lower Volga Region (to 105-year of Department of Animal Morphology and Ecology of Saratov State University). Current Studies in Herpetology, 2014, vol. 14, iss. 3–4, pp. 137–146 (in Russian).
Shlyakhtin G. V., Tabachishin V. G., Kaybeleva E. I., Mosolova E. Yu., Yermokhin M. V. Current Status of the Batrachological Collection of the Zoological Museum of Saratov University. Current Studies in Herpetology, 2015, vol. 15, iss. 3–4, pp. 153–159 (in Russian).
Shnitnikov A. V. Intrasecular fluctuations in the level of steppe lakes of Western Siberia and Northern Kazakhstan and their dependence on climate. Transactions of the Laboratory of Limnology, USSR Academy of Sciences. Moscow, 1950, vol. 1, pp. 28–129 (in Russian).
Alford R. A. Declines and the global status of amphibians. In: Ecotoxicology of amphibians and reptiles. Boca Raton, CRC Press, 2010, pp. 13–45.
Amburgey S., Funk W. C., Murphy M., Muphs E. Effects of hydroperiod duration on survival, developmen-tal rate, and size at metamorphosis in boreal chorus frog tadpoles (Pseudacris maculata). Herpetologica, 2012, vol. 68, iss. 4, pp. 456–467.
Bashinskiy I. V., Senkevich V. A., Stoyko T. G., Katsman E. A., Korkina S. A., Osipov V. V. Forest-steppe oxbows in limnophase – Abiotic features and bio-diversity. Limnologica, 2019, vol. 74, iss. 1, pp. 14–22. DOI: https://doi.org/10.1016/j.limno.2018.10.005
Beck C. W., Congdon J. D. Effects of individual variation in age and size at metamorphosis on growth and survivorship of southern toad (Bufo terrestris) metamorphs. Canadian J. of Zoology, 1999, vol. 77, iss. 6, pp. 944–951.
Bell B. The recent decline of a New Zealand endemic: how and why did populations of Archey’s frog Leiopelma archeyi crash over 1996–2001?. Biological Conservation, 2004, vol. 120, no. 2, pp. 189–199.
Berven K. A. Factors affecting population fluctua-tions in larval and adult stages of the wood frog (Rana sylvatica). Ecology, 1990, vol. 71, no. 4, pp. 1599–1608.
Berven K. A., Gill D. E. Interpreting geographic variation in life-history traits. American Zoologist, 1983, vol. 23, no. 1, pp. 85–97.
Blaustein A. R., Walls S. C., Bancroft B. A., Lawler J. J., Searle C. L., Gervasi S. S. Direct and Indirect Effects of Climate Change on Amphibian Populations. Diversity, 2010, vol. 2, no. 2, pp. 281–313.
Blem C. R. Lipid reserves and body composition in postreproductive anurans. Comparative Biochemistry and Physiology, 1992, vol. 103A, no. 4, pp. 653–656.
Cabrera-Guzmán E., Crossland M. R., Brown G. P., Shine R. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS ONE, 2013, vol. 8, iss. 7, pp. e70121.
Chelgren N. D., Rosenberg D. K., Heppell S. S., Gitelman A. I. Carryover aquatic effects on survival of metamorphic frogs during pond emigration. Ecological Applications, 2006, vol. 16, no. 1, pp. 250–261.
Corn P. S., Bury R. B. Sampling Methods for Terrestrial Amphibians and Reptilies / USDA Forest Service, Pacific Northwest Research Station. Portland. General Technical Report PNW-GTR-275, 1990. 34 p.
Crump M. L. Energy Accumulation and Amphibian Metamorphosis. Oecologia, 1981, vol. 49, no. 2, pp. 167–169.
Denver R. J., Mirhadi N., Phillips M. Adaptive plasticity in amphibian metamorphosis: Response of Scaphiopus hammondii tadpoles to habitat desiccation. Ecology, 1998, vol. 79, no. 6, pp. 1859–1872.
Dmitriew C., Rowe L. The effects of larval nutri-tion on reproductive performance in a food-limited adult environment. PLoS ONE, 2011, vol. 6, iss. 3, pp. e17399.
Earl J. E., Whiteman H. H. Are commonly used fitness predictors accurate? A meta-analysis of amphibian size and age at metamorphosis. Copeia, 2015, vol. 103, iss. 2, pp. 297–309.
Goater C. P. Growth and survival of postmetamorphic toads: interactions among larval history, density, and parasitism. Ecology, 1994, vol. 75, no. 8, pp. 2264–2274.
Grant E. H. C., Miller D. A. W., Schmidt B. R., Adams M. J., Amburgey S. M., Chambert T., Cruick-shank S. S., Fisher R. N., Green D. M., Hossack B. R., Johnson P. T. J., Joseph M. B., Rittenhouse T. A. G., Ryan M. E., Waddle J. H., Walls S. C., Bailey L. L., Fellers G. M., Gorman T. A., Ray A. M., Pilliod D. S., Price S. J., Saenz D., Sadinski W., Muths E. Quantitative evidence for the effects of multiple drivers on continen-tal-scale amphibian declines. Scientific Reports, 2016, vol. 6, pp. 25625. DOI: https://doi.org/10.1038/srep25625
Guarino F. M., Caputo V., Angelini F. The reproductive cycle of the newt Triturus italicus. Amphibia–Reptilia, 1992, vol. 13, no. 2, pp. 121–133.
Hammer O., Harper D. A. T., Ryan P. D. PAST: Paleontological Statistics software package for education and data analysis. Paleontologia Electronica, 2001, vol. 4, no. 1, pp. 1–9.
Hels T. Population dynamics in a Danish metapopulation of spadefoot toads Pelobates fuscus. Ecography, 2002, vol. 25, no. 3, pp. 303–313.
Huang W.-S., Lin J.-Y., Yu-Lin Yu J. The male reproductive cycle of the toad, Bufo bankorensis, in Taiwan. Zoological Studies, 1996, vol. 35, no. 2, pp. 128–137.
Huang W.-S., Lin J.-Y., Yu-Lin Yu J. Male reproductive cycle of the toad Bufo melanostictus in Taiwan. Zoological Science, 1997, vol. 14, no. 3, pp. 497–503.
Iela L., Milone M., Caliendo M. F., Rastogi R. K., Chieffi G. Role of lipids in the physiology of the testis of Rana esculenta: Annual changes in the lipid and protein content of the liver, fat body, testis and plasma. Bolletino di Zoologia, 1979, vol. 46, no. 1–2, pp. 11–16.
Indermaur L., Schmidt B. R., Tockner K., Schaub M. Spatial variation in abiotic and biotic factors in a floodplain determine anuran body size and growth rate at metamorphosis. Oecologia, 2010, vol. 163, no. 3, pp. 637–649.
Kanamadi R. D., Saidapur S. K., Bhuttewadkar N. U., Yamakanamaradi S. M. Annual changes in the fat body of the male toad, Bufo melanostictus (Schn.) inhabiting the tropical zone of South India. Proceedings of the Indian Academy of Sciences, 1989, vol. 55, no. 4, pp. 261–264.
Kulkarni S. S., Gomez-Mestre I., Moskalik C. L., Storz B. L., Buchholz D. R. Evolutionary reduction of developmental plasticity in desert spadefoot toads: Comparative developmental plasticity in frogs. J. of Evolutionary Biology, 2011, vol. 24, no. 11, pp. 2445–2455.
Leips J., McManus M. G., Travis J. Response of treefrog larvae to drying ponds: Comparing temporary and permanent pond breeders. Ecology, 2000, vol. 81, no. 11, pp. 2997–3008.
Lind M. I., Persbo F., Johansson F. Pool desiccation and developmental thresholds in the common frog, Rana temporaria. Proceedings of the Royal Society B, 2008, vol. 275, iss. 1638, pp. 1073–1080.
Loman J. Temperature, genetic and hydroperiod effects on metamorphosis of brown frogs Rana arvalis and R. temporaria in the field. J. of Zoology, 2002, vol. 258, no. 1, pp. 115–129.
Loman J., Claesson D. Plastic response to pond drying in tadpoles Rana temporaria: tests of cost models. Evolutionary Ecology Research, 2003, vol. 5, no. 2, pp. 179–194.
Marino Jr. J. A., Werner E. E. Synergistic effects of predators and trematode parasites on larval green frog (Rana clamitans) survival. Ecology, 2013, vol. 94, no. 12, pp. 2697–2708.
Márquez-García M., Correa-Solis M., Sallaberry M., Méndez M. A. Effects of pond drying and life-history traits in the anuran Rhinella spinulosa (Anura: Bufonidae). Evolutionary Ecology Research, 2009, vol. 11, iss. 5, pp. 803–815.
Matthews J. H., Funk W. C., Ghalambor C. Demographic approaches to assessing climate change impacts: An application to pond-breeding frogs and shifting hydroperiods. In: J. F. Brodie, E. Post, D. Do, eds. Wildlife Conservation in a Changing Climate. Chicago, University of Chicago Press, 2012, pp. 58–85.
McDiarmid R. W. Preparing amphibians as scientific specimens. In: W. R. Heyer, M. A. Donnelly, R. W. McDiarmid, L. A. C. Hayek, M. S Foster, eds. Measuring and monitoring biological diversity: standard methods for amphibians. Washington, London, Smithsonian Institution Press, 1994, pp. 289–297.
Morey S., Reznick D. Effects of larval density on postmetamorphic spadefoot toads (Spea hammondii). Ecology, 2001, vol. 82, no. 2, pp. 510–522.
Newman R. A., Dunham A. E. Size at metamor-phosis and water loss in a desert anuran (Scaphiopus couchii). Copeia, 1994, vol. 1994, iss. 2, pp. 372–381. DOI: https://doi.org/10.2307/1446984
Orizaola G., Laurila A. Intraspecific variation of temperature-induced effects on metamorphosis in the pool frog (Rana lessonae). Canadian J. of Zoology, 2009, vol. 87, no. 7, pp. 581–588.
Pfennig D. W., Mabry A., Orange D. Environ-mental causes of correlations between age and size at metamorphosis in Scaphiopus multiplicatus. Ecology, 1991, vol. 72, no. 6, pp. 2240–2248.
Pisani G. R. A guide to preservation techniques for amphibians and reptiles. Salt Lake City, Society for the Study of Amphibians and Reptiles, 1973. 24 p.
Richter-Boix A., Llorente G. A., Montori A. A comparative analysis of the adaptive developmental plasticity hypothesis in six Mediterranean anuran species along a pond permanency gradient. Evolutionary Ecology Research, 2006, vol. 8, no. 6, pp. 1139–1154.
Rudolf V. H. W., Rödel M. Phenotypic plasticity and optimal timing of metamorphosis under uncertain time constraints. Evolutionary Ecology, 2007, vol. 21, no. 1, pp. 121–142.
Ryan T. J., Winne C. T. Effects of hydroperiod on metamorphosis in Rana sphenocephala. The American Midland Naturalist, 2001, vol. 145, iss. 1, pp. 46–53.
Petranka J. W. Sources of interpopulational variation in growth responses of larval salamanders. Ecology, 1984, vol. 65, no. 6, pp. 1857–1865.
Schmidt B. R., Hödl W., Schaub M. From metamorphosis to maturity in complex life cycles: equal performance of different juvenile life history pathways. Ecology, 2012, vol. 93, no. 3, pp. 657–667.
Scott D. E., Casey E. D., Donovan M. D., Lynch T. K. Amphibian lipid levels at metamorphosis correlate to post-metamorphic terrestrial survival. Oecologia, 2007, vol. 153, no. 3, pp. 521–532.
Semlitch R. D. Time and size at metamorphosis related to  adult  fitness  in  Ambystoma  talpoideum. Ecology, 1988, vol. 69, no. 1, pp. 184–192.
Shanbhag B., Mogali S., Saidapur S. Influence of desiccation, predatory cues, and density on metamorphic traits of the bronze frog Hylarana temporalis. Amphibia–Reptilia, 2016, vol. 37, no. 2, pp. 199–205.
Sinsch U. Migration and orientation in anuran amphibians. Ethology, Ecology, and Evolution, 1990, vol. 2, no. 1, pp. 65–79.
Székely D., Denoël M., Székely P., Cogălniceanu D. Pond drying cues and their effects on growth and metamorphosis in a fast developing amphibian. J. of Zoology, 2017, vol. 303, no. 2, pp. 129–135.
ten Hagen L., Rodríguez A., Menke N., Göck-ing C., Bisping M., Frommolt K.-H., Ziegler T., Bon-kowski M., Vences M. Vocalizations in juvenile anurans: common spadefoot toads (Pelobates fuscus) regularly emit calls before sexual maturity. The Science of Nature, 2016, vol. 103, no. 9–10, pp. 75. DOI: https://doi.org/10. 10 07/s00114-016-1401-0
Tordoff W., Pettus D. Temporal stability of phenotypic frequencies in Pseudacris triseriata (Amphibia, Anura, Hylidae). J. of Herpetology, 1977, vol. 11, no. 2, pp. 161–168.
Vonesh J. R., Warkentin K. M. Opposite shifts in size at metamorphosis in response to larval and metamorph predators. Ecology, 2006, vol. 87, no. 3, pp. 556–562.
Warburg M. R. On the water economy of Israel amphibians: the anurans. Comparative Biochemistry and Physiology. Part A: Physiology, 1971, vol. 40, iss. 4, pp. 911–924.
Warburg M. R. Ecophysiology of amphibians inhabiting xeric environments. Berlin, Heidelberg, Springer, 1997. 192 p.
Wilbur H. M., Collins J. P. Ecological aspects of amphibian metamorphosis. Science, 1973, vol. 182, iss. 4119, pp. 1305–1314.
Yermokhin M. V., Tabachishin V. G., Ivanov G. A. Spawning migration phenology of the spadefoot toad Pelobates fuscus (Pelobatidae, Amphibia) in the valley of the Medveditsa River (Saratov Oblast). Biology Bulletin, 2015, vol. 42, no. 10, pp. 931–936.
Yermokhin M. V., Tabachishin V. G., Ivanov G. A. Phenological changes in the wintering of Pelobates fuscus (Pelobatidae, Amphibia) in the climate transformation conditions in the Northern Lower Volga Region. Biology Bulletin, 2017, vol. 44, no. 10, pp. 1215–1227.

Short text (in English): 
Full text (in Russian): 
Номер страницы (по): 
117.00